IgG-Containing Isoforms of Neuregulin-1 Are Dispensable for Cardiac Trabeculation in Zebrafish

نویسندگان

  • Leigh Ann Samsa
  • Cade Ellis Ito
  • Daniel Ross Brown
  • Li Qian
  • Jiandong Liu
چکیده

The Neuregulin-1 (Nrg1) signaling pathway has been widely implicated in many aspects of heart development including cardiac trabeculation. Cardiac trabeculation is an important morphogenetic process where clusters of ventricular cardiomyocytes extrude and expand into the lumen of the ventricular chambers. In mouse, Nrg1 isoforms containing an immunoglobulin-like (IgG) domain are essential for cardiac trabeculation through interaction with heterodimers of the epidermal growth factor-like (EGF-like) receptors ErbB2/ErbB4. Recent reports have underscored the importance of Nrg1 signaling in cardiac homeostasis and disease, however, placental development has precluded refined evaluation of the role of this pathway in mammals. ErbB2 has been shown to have a developmentally conserved role in cardiac trabeculation in zebrafish, a vertebrate model organism with completely external development, but the requirement for Nrg1 has not been examined. We found that among the multiple Nrg1 isoforms, the IgG domain-containing, type I Nrg1 (nrg1-I) is the only isoform detectable in the heart. Then, using CRISPR/Cas9 gene editing, we targeted the IgG domain of Nrg1 to produce novel alleles, nrg1nc28 and nrg1nc29, encoding nrg1-I and nrg1-II truncations. Our results indicated that zebrafish deficient for nrg1-I developed trabeculae in an ErbB2-dependent manner. Further, these mutants survive to reproductive adulthood with no overt cardiovascular defects. We also found that additional EGF-like ligands were expressed in the zebrafish heart during development of trabeculae. Together, these results suggest that Nrg1 is not the primary effector of trabeculation and/or that other EGF-like ligand(s) activates the ErbB2/ErbB4 pathway, either through functioning as the primary ligand or acting in a redundant manner. Overall, our work provides an example of cross-species differences in EGF family member requirements for an evolutionary conserved process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of cardiomyocyte behavior in zebrafish trabeculation by Neuregulin 2a signaling

Trabeculation is crucial for cardiac muscle growth in vertebrates. This process requires the Erbb2/4 ligand Neuregulin (Nrg), secreted by the endocardium, as well as blood flow/cardiac contractility. Here, we address two fundamental, yet unresolved, questions about cardiac trabeculation: why does it initially occur in the ventricle and not the atrium, and how is it modulated by blood flow/contr...

متن کامل

Neuregulins Response to Exercise: a Mini Review

The Neuregulin is a member of the epidermal growth factors (EGF) family of receptor kinases, was originally identified as the product of the transforming gene derived from chemically induced rat neuroblastoms. A variety of different protein isoforms are produced from single Neuregulin gene. Four distinct vertebrate gene encode Neuregulin, prosaically named NRG1, NRG2, NRG3, and NRG4. Most of bi...

متن کامل

Dev125724 4080..4091

Congenital heart disease often features structural abnormalities that emerge during development. Accumulating evidence indicates a crucial role for cardiac contraction and the resulting fluid forces in shaping the heart, yet the molecular basis of this function is largely unknown. Using the zebrafish as a model of early heart development, we investigated the role of cardiac contraction in chamb...

متن کامل

Neuregulin‐1 is essential for nerve plexus formation during cardiac maturation

The Neuregulin-1 (Nrg1)/ErbB pathway plays multiple, critical roles in early cardiac and nervous system development and has been implicated in both heart and nerve repair processes. However, the early embryonic lethality of mouse Nrg1 mutants precludes an analysis of Nrg1's function in later cardiac development and homeostasis. In this study, we generated a novel nrg1 null allele targeting all ...

متن کامل

Depletion of zebrafish titin reduces cardiac contractility by disrupting the assembly of Z-discs and A-bands.

The genetic study of titin has been notoriously difficult because of its size and complicated alternative splicing routes. Here, we have used zebrafish as an animal model to investigate the functions of individual titin isoforms. We identified 2 titin orthologs in zebrafish, ttna and ttnb, and annotated the full-length genomic sequences for both genes. We found that ttna, but not ttnb, is requi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016